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Abstract
A countable set of asymptotic space-localized solutions is constructed by the
complex germ method in the adiabatic approximation for the nonstationary
Gross–Pitaevskii equation with nonlocal nonlinearity and a quadratic potential.
The asymptotic parameter is 1/T , where T � 1 is the adiabatic evolution
time. A generalization of the Berry phase of the linear Schrödinger equation
is formulated for the Gross–Pitaevskii equation. For the solutions constructed,
the Berry phases are found in explicit form.

PACS numbers: 02.30.Jr, 03.65.Sq

1. Introduction

A quantum system with slowly (adiabatically) varying parameters is characterized by the
conservation of its quantum numbers throughout the time of adiabatic evolution when the
system Hamiltonian has a nondegenerate spectrum. In other words, the vector of the system
state remains an eigenvector at any time and gains a phase factor during the adiabatic evolution
(see e.g. [1]). Berry has shown [2] that the phase gained consists of a dynamic and a geometric
(topological) part. Such a division is caused by different mechanisms of their origination. The
dynamic phase is associated with the evolution of the system and the topological one with the
geometry of its parameter space.

Both phases result from the decomposition of the general phase of the leading term in the
semiclassical approximation of the solution of the Schrödinger equation in a small parameter
1/T , where T is the adiabatic evolution time. The dynamic phase corresponds to the zeroth-
order term in the 1/T expansion and the Berry phase belongs to the first-order term. Inclusion
of the topological phase in the general phase is necessary to determine the leading term of
the semiclassical asymptotic series. The work [2] has initiated comprehensive investigations
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of the geometric phases of linear quantum-mechanical equations. For details see the reviews
[3–6].

It is of interest to study geometric phases for nonlinear equations describing various classes
of nonlinear phenomena [7] whose nonlinear properties are due to collective interactions. An
important example of systems showing nonlinear properties is the Bose–Einstein condensate
(BEC) [8, 9].

In the BEC theory, various models are used. In [10, 11], the BEC model is based on the
two-level Hamiltonian of a system of particles confined by a magnetic field. The system has a
constant number of particles distributed between two subsystems, which are in different states.
The Berry phase for this system is obtained under the condition that the system parameters
responsible for the interaction of the subsystems vary slowly.

Many of the BEC models are based on the Gross–Pitaevskii equation (GPE) [8, 9, 12, 13],
which is a nonstationary multidimensional cubic-nonlinear Schrödinger equation with the
potential of an external field. The BEC states are described by localized solutions of the GPE.
In studying these models, a number of serious mathematical problems arise. We mention two
of them which are essential for our consideration.

First, no method of exact integration for the GPE is available except for the nonstationary
one-dimensional Schrödinger equation that is integrable by the inverse scattering transform
method [14] with no external field. In the presence of an external field, only an approximate
solution can be found in terms of the soliton perturbation theory [15] with the assumption of
a weak external field.

Second, even for a two-dimensional space, the localized solutions of the nonlinear
Schrödinger equation (NLSE) with focusing cubic nonlinearity and no external field are
unstable and eventually collapse [16], which is not observed in experiments. On the other
hand, models based on the GPE with local nonlinearity can be considered as simplified versions
of models with the GPE having a nonlocal nonlinearity [18]. This is a reason to consider in
more detail the nonlocal operator

∫ +∞
−∞ V (�x − �y)|�(�y, t)|2 d�y that arises in the derivation of the

Gross–Pitaevskii equation. The interatomic potential V (�x − �y) is usually assumed to be short
range, and therefore the above nonlocal nonlinear operator can be replaced by a local operator
β|�(�x, t)|2, where β = ∫ +∞

−∞ V (�y) d�y. More detailed analysis of the nonlocal properties can
be found, for example, in [18] where the wavefunction of the one-dimensional equation is
expanded in a series in z = x − y. The symmetry of the potential and its decrease at infinity
result in an additional term ∝ ∂2

∂x2 |ψ |2 in the local Gross–Pitaevskii equation. The equations
obtained are studied by numerical methods as the construction of an analytical solution fails
even in the one-dimensional case.

In this work, we consider the one-dimensional nonlocal Gross–Pitaevskii equation and
use an approach where the potential V (x, y) is expanded in the variables (x, y) to the second-
order terms. Exact solutions are constructed for this equation in [19, 20]. Although the
interatomic quadratic potential does not decrease at infinity, the convergence of the integral
is provided by a proper choice of the class of functions in which we seek solutions to the
equation.

The one-dimensional GPE describes BEC states if the longitudinal dimension of the
condensate is much greater than its cross dimension [18]. Unlike the NLSE with local
nonlinearity, the basic properties of the solutions of the nonlocal one-dimensional GPE
conserve in the multidimensional case.

The aim of this work is to obtain the Berry phase in explicit form for a one-dimensional
GPE of the form

{−ih̄∂t + Ĥ�(R(t),�(t))}� = 0, (1.1)
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Ĥ�(R(t),�(t)) = Ĥ(R(t)) + �V̂ (R(t),�(t)),

Ĥ(R(t)) = µ(t)p̂2

2
+

σ(t)x2

2
+

ρ(t)(xp̂ + p̂x)

2
,

V̂ (R(t),�(t)) = 1

2

∫ +∞

−∞
dy[a(t)x2 + 2b(t)xy + c(t)y2]|�(y, t)|2,

(1.2)

which involves a quadratic potential and an external field of the harmonic oscillator type. Here
a(t), b(t) and c(t) are the potential parameters, � is the nonlinearity parameter, and µ(t), σ (t)

and ρ(t) are time-dependent system parameters. Therefore, the Hamiltonian depends on
time via the set of parameters R(t) = (µ(t), σ (t), ρ(t), a(t), b(t) and c(t)). The quadratic
potential in equations (1.1) and (1.2) models the magnetic traps that confine the condensate
[17].

The problem of constructing solutions for equation (1.1) with an external potential is
solved with the use of the semiclassical integration method developed in [19–22], where
equation (1.1) is called the ‘Hartree-type equation’. Below we call the nonlinear operator Ĥ�

in equation (1.1) the nonlinear Hamiltonian. The semiclassical integration method allows one
to construct localized solutions, approximate for the potential of general form and exact for
the quadratic potential. We use these solutions to find and study geometric Berry phases.

Let us give necessary facts from the theory of geometric phases of linear quantum-
mechanical systems to find Berry phase in the nonlinear case. Following [2] (see also [5, 3]),
we consider a Hamiltonian Ĥ(t) = Ĥ(R(t)), which depends on time t via a set of slowly
varying T-periodic functions R(t). Denote by �En(R(t))(x, R(t)) the eigenfunctions of the
instantaneous Hamiltonian Ĥ(R(t)):

Ĥ(R(t))�En(R(t))(x, R(t)) = En(R(t))�En(R(t))(x, R(t)). (1.3)

Assume the spectrum of the Hamiltonian Ĥ(R(t)) to be nondegenerate at any fixed time and
set the Cauchy problem

{−ih̄∂t + Ĥ(R(t))}� = 0, (1.4)

�|t=t0 = �En(R(t0))(x, R(t0)). (1.5)

According to the adiabatic theorem [1]3, the quantum numbers of the system will conserve
throughout the adiabatic evolution time T if the parameters R(t) depend on time adiabatically.
In other words, a solution of the Cauchy problem (1.4), (1.5) differs from the initial state by
the phase factor

�(x, T ) = exp[iφn(T )]�En(R(T ))(x, R(T )). (1.7)

Following [2], represent the phase φn(T ) as

φn(T ) = δn(T ) + γn(T ), (1.8)

where δn(T ) is the dynamic phase given by

δn(T ) = −1

h̄

∫ T

0
En(R(t)) dt. (1.9)

3 It is generally agreed that a system evolves adiabatically if

max
i=1,n

Ṙi

T

Ri

� 1, (1.6)

where Ri are the parameters of the Hamiltonian (see [23]).
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The phase γn(T ) is called an adiabatic Berry phase, and for a linear Schrödinger equation it
is determined by the expression

γ̇n(t) = i
〈
�En(R(t))(x, R(t))

∣∣ �̇En(R(t))(x, R(t))
〉

(1.10)

or

γn(T ) = i
∫ T

0

〈
�En(R(t))(x, R(t))

∣∣ �̇En(R(t))(x, R(t))
〉
dt =

∮
C

An
j dRj. (1.11)

Here

An
j = i

〈
�n

∣∣∣∣∂�n

∂Rj

〉
(1.12)

and C is a closed contour in the parameter space. The functions An
j act as components of an

‘induced gauge field’ since under the gauge transformations

�n → exp(iξn(R))�n (1.13)

the quantities An are transformed as

An
j → An

j +
∂ξn

∂Rj
. (1.14)

Expression (1.11) does not depend on the transformation (1.14) as the contour C is closed. The
dynamic phase δn(T ) characterizes the mean value of the system energy, and the geometric
phase γn(T ) does not depend on the system dynamics. Berry’s phase depends on the geometry
of the system parameter space and on the type of the contour C.

Assume the adiabatic theorem to hold for nonlinear equations and define Berry’s phase
by relations (1.8) and (1.9). Formula (1.11), being equivalent to (1.8) in the linear case, needs
additional substantiation for nonlinear equations.

In this work, we use the approach developed in [24, 25] for linear equations to find Berry’s
phase. The approach is based on the exact (or approximate) solution of the Cauchy problem
(1.4), (1.5) which is expanded in an adiabatic parameter. For the linear equation (1.1), the
exact solution of the Cauchy problem is constructed using the method proposed in [19]. Here,
the initial Hamiltonian in the initial condition of the Cauchy problem (1.5) is replaced by (1.2)
and the solution is determined by two auxiliary systems of ordinary differential equations:
the Hamilton–Ehrenfest system and the system in variations. Solutions of these systems are
unknown when the coefficients are arbitrary functions of time. When the coefficients depend
on time adiabatically, we can seek the solution in the form of an expansion in the adiabaticity
parameter which is taken as 1/T , where T is a ‘long’ characteristic time, for example, the
adiabatic evolution period of the system.

If the Hamilton–Ehrenfest system and the system in variations are solved accurate to
O(1/T ), the equation considered is solved with the same accuracy, and thus we obtain a
solution of equation (1.1) in the adiabatic approximation. For such a solution, Berry’s phase
can be found in explicit form.

2. The Hamilton–Ehrenfest system

For a linear operator Â we define its mean value in a state �(t) as

〈Â(t)〉 = 1

‖�(t)‖2
〈�(t)|Â|�(t)〉 = A�(t, h̄). (2.1)

On the solutions �(t) of equation (1.4) we have

d〈Â(t)〉
dt

=
〈

∂Â(t)

∂t

〉
+

i

h̄
〈[Ĥ�(t, �(t)), Â(t)]〉, (2.2)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator of linear operators Â and B̂.
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Similar to the linear case, we call (2.2) the Ehrenfest equation. From this equation with
Â = 1 it follows, in particular, that the norm of a solution of equation (1.4) is conserved, that
is,

‖�(x, t)‖2 = ‖�(x, 0)‖2 = ‖�‖2.

So it is convenient to use the nonlinear parameter �̃ = �‖�‖2 instead of �.
Denote by

α
(l,k)
� (t, h̄) = 1

‖�‖2

∫ +∞

−∞
�∗(y, t){(p̂y)

l(y)k}�(y, t) dy, k, l = 0,∞,

the moments of the (k + l)th order centred relative to x�(t, h̄) and p�(t, h̄). Here p̂y =
−ih̄∂y − p�(t, h̄), and {(p̂y)

l(y)k} is a Weyl-ordered operator with the symbol
(py)

l(y)k . In particular,

σxx(t, h̄) = α
(0,2)
� (t, h̄), σpp(t, h̄) = α

(2,0)
� (t, h̄), σxp(t, h̄) = α

(1,1)
� (t, h̄)

are the variances of the coordinates and momenta and of the correlation function of the
coordinates and momenta, respectively.

Consider the first-order operators p̂ and x and the centred second-order operators
(x)2, (p̂)2, (xp̂ + p̂x)/2, where p̂ = p̂ − p�(t, h̄),x = x − x�(t, h̄),

p�(t, h̄) = 〈p̂〉 and x�(t, h̄) = 〈x〉.
The Ehrenfest system for the mean values of these operators reads

ṗ = −σ0(t)x − ρ(t)p,

ẋ = µ(t)p + ρ(t)x,

σ̇xx = 2µ(t)σxp + 2ρ(t)σxx,

σ̇xp = µ(t)σpp − σ̃ (t)σxx,

σ̇pp = −2ρ(t)σpp − 2σ̃ (t)σxp.

(2.3)

Here

σ0(t) = σ(t) + �̃(a(t) + b(t)), σ̃ (t) = σ(t) + �̃a(t).

For system (2.3), let us set a Cauchy problem with initial conditions

p|t=s = p0, x|t=s = x0,

σpp|t=s = σ0pp, σxp|t=s = σ0xp, σxx |t=s = σ0xx.
(2.4)

We call (2.3) the second-order Hamilton–Ehrenfest system (HES) related to equation (1.4).
Consider the HES (2.3) as a dynamical system which is not related to equation (1.4).

Apparently, not all solutions of the HES can be obtained as mean values of the corresponding
operators on the solutions of equation (1.4). For example, the mean values must satisfy the
Schrödinger uncertainty relation

σppσxx − σ 2
xp � h̄2

4
(2.5)

for the second-order moments (for the higher order relations see [26]). It can readily be seen
that the HES admits the trivial solution p = 0, x = 0, α(k,l) = 0, k + l = 2. The left-hand
side of (2.5) is the integral of motion of the HES (2.3) (see [27]). Hence, it suffices that the
uncertainty relation be fulfilled at the initial time. The uncertainty relations will be fulfilled
automatically if the initial conditions for (2.3) are taken as

p|t=s = p0 = pψ(h̄), x|t=s = x0 = xψ(h̄),

σpp|t=s = α
(2,0)
ψ (h̄), σxp|t=s = α

(1,1)
ψ (h̄), σxx |t=s = α

(0,2)
ψ (h̄),

(2.6)
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where ψ(x, h̄) is the initial condition for equation (1.4):

�(x, h̄, t)|t=0 = ψ(x, h̄). (2.7)

Denote a trajectory in an extended phase space by g = g(t,C) ∈ R
5, where

g(t,C) = (P (t,C),X(t,C), σpp(t,C), σpx(t,C), σxx(t,C))ᵀ,

C = (C1, C2, C3, C4, C5)
ᵀ,

(2.8)

is the general solution of the Hamilton–Ehrenfest system (2.3) and ĝ is the operator column

ĝ = (
p̂, x, (p̂)2, 1

2 (p̂x − xp̂), (x)2
)ᵀ

. (2.9)

Here Cl, l = 1, 5, are arbitrary constants which can be expressed in terms of the initial
conditions (2.4). The matrix Bᵀ is transposed to the matrix B. The system (2.3) can be
rewritten in the form

ġ = Ag, g|t=s = g0, (2.10)

where

A =


−ρ(t) −σ0(t) 0 0 0
µ(t) ρ(t) 0 0 0

0 0 −2ρ(t) −2σ̃ (t) 0
0 0 µ(t) 0 −σ̃ (t)

0 0 0 2µ(t) 2ρ(t)

 .

3. The associated linear Schrödinger equation

Let us seek a solution to equation (1.1) in the form of the ansatz

�(x, t, h̄) = ϕ

(
x√

h̄
, t,

√
h̄

)
exp

[ i

h̄
(S(t,C) + P(t,C)x)

]
. (3.1)

Here the function ϕ(ξ, t,
√

h̄) belongs to the Schwartz space S in the variable ξ = x/
√

h̄

and depends regularly on
√

h̄; x = x − X(t,C). The real functions S(t,C) and
Z(t,C) = (P (t,C),X(t,C)) that characterize the solution are to be determined.

Expand the operators in equation (1.1) in a Taylor series in x = x − x�(t, h̄),y =
y − x�(t, h̄), p̂ = p̂ −p�(t, h̄), and ẑ = ẑ − z�(t, h̄). Then equation (1.1) takes the form{
−ih̄∂t + H(t, �) + 〈Hz(t, �),ẑ〉 +

1

2
〈ẑ,Hzz(t, �)ẑ〉

}
� = 0,

H(t, �) = µ(t)p2
�(t, h̄)

2
+

σ(t)x2
�(t, h̄)

2
+ ρ(t)x�(t, h̄)p�(t, h̄)

+
�̃

2
cα

(0,2)
� (t, h̄) +

�̃

2
(a + 2b + c)x2

�(t, h̄),

Hz(t, �) =
(

µ(t)p�(t, h̄) + ρ(t)x�(t, h̄)

σ (t)x�(t, h̄) + ρ(t)p�(t, h̄) + �̃(a + b)x�(t, h̄)

)
,

Hzz(t, �) =
(

µ(t) ρ(t)

ρ(t) σ̃ (t)

)
.

(3.2)

Let us associate the nonlinear equation (3.2) with the linear equation that is obtained from
(3.2) by formal substitution of the solution of the HES (2.3) instead of the corresponding



Berry phases for the nonlocal Gross–Pitaevskii equation with a quadratic potential 1197

mean values of the coordinate and momenta operators and second-order centred moments.
The resulting linear equation is{
−ih̄∂t + H(t,C) + 〈Hz(t,C),ẑ〉 +

1

2
〈ẑ,Hzz(t,C)ẑ〉

}
� = 0,

H(t,C) = µ(t)P 2(t,C)

2
+

σ(t)X2(t,C)

2
+ ρ(t)X(t,C)P (t,C)

+
�̃

2
cσ (t)xx(t,C, h̄) +

�̃

2
(a + 2b + c)X2(t,C),

Hz(t,C) =
(

µ(t)P (t,C) + ρ(t)X(t,C)

σ0(t)X(t,C) + ρ(t)P (t,C)

)
,

Hzz(t,C) =
(

µ(t) ρ(t)

ρ(t) σ̃ (t)

)
.

(3.3)

We call equation (3.3) the associated linear Schrödinger equation.
By direct check we see that the function

�0(x, t,C) = |0, t,C〉 = Nh̄

(
C(0)

C(t)

)1/2

exp

{
i

h̄

(
S(t,C) + P(t,C)x +

1

2

B(t)

C(t)
x2

)}
(3.4)

is a solution of equation (3.3). Here

S(t,C) =
∫ t

0
(P (t,C)Ẋ(t,C) − H(t,C)) dt, (3.5)

and B(t) and C(t) denote, respectively, the momentum and the coordinate part of the solution

a(t) =
(

B(t)

C(t)

)
(3.6)

of the system in variations

ȧ = JHzz(t)a, a|t=s = a0, (3.7)

related to equation (3.3).
The normalizing condition ‖�‖2 = 1 yields Nh̄ = (πh̄)−1/4(|C(0)|)−1/2.
Let us introduce the notation

â(t) = Na(C(t)p̂ − B(t)x).

If C(t) and B(t) are solutions of equations (3.7), then the operator â(t) commutes with the
operator of the associated equation (3.3). Therefore, the function

�n(x, t,C) = 1√
n!

(â+(t))n�0(x, t,C), n = 0,∞,

will be a solution of the Schrödinger equation (3.3). Commutating the operators â+(t) with
the operator of multiplication by the function �0(x, t,C) = |0, t,C〉, we obtain the following
representation for the Fock basis of solutions of the linear equation (3.3):

�n(x, t,C) = (i)n√
n!

(N∗
a )n�0(x, t,C)

[
|C(t)|√h̄

C(t)

]n [√
h̄|C(t)| ∂

∂x
− 2√

h̄|C(t)|x

]n

1

= 1√
n!

(N∗
a )n�0(x, t,C)

(
i√
2

)n

(
√

h̄)n exp (−in Arg C(t))Hn

(
x

√
Im Q(t)

h̄

)
,
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where Hn(ξ) are the Hermitian polynomials and Q(t) = B(t)C−1(t). Finding Na =
(1/

√
2h̄) exp [−i Arg C(0)] from the condition [â(t), â+(t)] = 1, we have

�n(x, t,C) = |n, t,C〉 = 1

n!
[â+(t)]n|0, t,C〉

= 1√
n!

|0, t〉
(

i√
2

)n

exp [−in(Arg C(t) − Arg C(0))]Hn(ξ), (3.8)

ξ =
√

ImQ(t)

h̄
x.

Using the properties of Hermitian polynomials, we obtain the mean values of the momentum
and coordinate operators and the corresponding variances:

x�n
= 0, p�n

= 0,

α
(2,0)
�n

= σpp(t, h̄) = h̄
σ̃ (t)(2n + 1)

2µ(t) ImQ(t)
,

α
(1,1)
�n

= σxp(t, h̄) = −h̄
ρ(t)(2n + 1)

2µ(t) ImQ(t)
,

α
(0,2)
�n

(t, h̄) = σxx(t, h̄) = h̄
(2n + 1)

2ImQ(t)
.

(3.9)

The functions �n(x, t,C) are solutions of equation (1.1) for properly chosen C, such that
the solutions of the Hamilton–Ehrenfest system solutions (2.3) coincide with equations (3.9).
Denoting this set of parameters by Cn, we obtain

�n(x, t) = �n(x, t,Cn). (3.10)

The subscript n in Cn implies that every function �n(x, t) has its own set of parameters Cn.

4. Eigenfunctions of the instantaneous nonlinear Hamiltonian

To construct the Berry phase using formulae (1.7) and (1.8), we have to solve a spectral
problem for the instantaneous Hamiltonian (1.2) in the class of functions (3.1)

Ĥ�(R,ψn)ψn = Enψn. (4.1)

To solve this problem, consider the nonstationary Schrödinger equation

{−ih̄∂t + Ĥ�(R,�(t))}� = 0. (4.2)

Solutions of equation (4.2) of the form

�(x, t) = exp
{
− i

h̄
En(R)t

}
ψn(x, R) (4.3)

provide a solution of the spectral problem (4.1) where ψn(x, R) and En(R) are the
instantaneous eigenfunctions and eigenvalues of the Hamiltonian Ĥ�(R,ψn(R)), respectively.

The Hamilton–Ehrenfest system (2.3) for the first-order moments related to equation (4.2)
takes the form {

ṗ = −σ0x − ρp,

ẋ = µp + ρx,
(4.4)

and for the second-order moments we have
σ̇xx = 2µσxp + 2ρσxx,

σ̇xp = µσpp − σ̃ σxx,

σ̇pp = −2ρσpp − 2σ̃ σxp,

(4.5)
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where

σ0 = σ + �̃(a + b), σ̃ = σ + �̃a.

Let us denote

�̃ =
√

σ0µ − ρ2, � =
√

σ̃µ − ρ2. (4.6)

The spectral problem is associated only with the time-localized solutions of the system (4.4),
(4.5) which are stable in the linear approximation. The localization condition holds when

�̃2 = σ0µ − ρ2 > 0, �2 = σ̃µ − ρ2 > 0.

In this case, the general solution of the system (4.4) is given by

X(t) = C1 sin �̃t + C2 cos �̃t,

P (t) = 1

µ
(�̃C1 − ρC2) cos �̃t − 1

µ
(�̃C2 + ρC1) sin �̃t.

(4.7)

Accordingly, for the system (4.5) we have

σxx(t) = C3 sin 2�t + C4 cos 2�t + C5,

σxp(t) = 1

µ
(�C3 − ρC4) cos 2�t − 1

µ
(�C4 + ρC3) sin 2�t − ρ

µ
C5,

σpp(t)= 1

µ2
((ρ2 − �2)C3 + 2ρ�C4) sin 2�t +

1

µ2
((ρ2 − �2)C4 − 2ρ�C3) cos 2�t +

σ̃

µ
C5.

(4.8)

Here Cl, l = 1, 5, are arbitrary constants.
Following equation (2.8), denote the general solution of the Hamilton–Ehrenfest system

(4.4), (4.5) by g = g(t,C) ∈ R
5. To solve the spectral problem, we need for the stationary

solution of the Hamilton–Ehrenfest system (4.4), (4.5) g = g(t,Cs) ∈ R
5 that is obtained with

the parameters taken as follows:

Cs = (0, 0, 0, 0, C5)
ᵀ. (4.9)

The system in variations (3.7) for the corresponding associated linear equation (3.3) becomes

ȧ(t) =
(

−ρ −σ̃
µ ρ

)
a(t). (4.10)

Let us set a Floquet problem [28] for the system in variations (4.10):

a(t + T ) = ei�T a(t). (4.11)

The quasiperiodicity condition (4.11) for solutions of the system in variations (4.10) is
sufficient for the solutions of the Hamilton–Ehrenfest system in the linear approximation to
be stable. A solution of the Floquet problem (4.10), (4.11), with the normalization condition

{a(t), a∗(t)} = 2i, {a1, a2} = 〈a1, J
ta2〉,

can be written in the form

a(t) = ei�t

√
�µ

(
−ρ + i�

µ

)
. (4.12)

Let us seek solutions to equation (4.2) in the form (3.1). Then the solution (3.4) of the
corresponding associated equation (3.3) is given by

�0(x, t,C) = 4

√
1

πh̄

2

√
1

|C(t)| exp

{
i

h̄

(
− �̃

2
cC5t − 1

2
h̄�t +

1

2

B(t)

C(t)
x2

)}
. (4.13)
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Accordingly, for the Fock basis (3.8) we obtain

�n(x, t,C) = in√
n!

exp{−in�t}
(

1√
2

)n

Hn

(√
�

h̄µ
x

)
�0(x, t,C). (4.14)

Taking the parameters of the solution of the Hamilton–Ehrenfest system in the form

Cn = (C1, C2, C3, C4, C5)
ᵀ =

(
0, 0, 0, 0, h̄

µ(2n + 1)

2�

)ᵀ
, (4.15)

we obtain that solutions of the associated equation (3.3) will be solutions of the original
equation (4.2):

�n(x, t) = �n(x, t,Cn) = in√
n!

(
1√
2

)n ( 1

πh̄

)1/4 (
�

µ

)1/4

exp

{
i

h̄

(
−
(

n +
1

2

)
h̄

�̃cµ

2�
t

−
(

n +
1

2

)
h̄�t − 1

2

ρ

µ
x2

)
− 1

2h̄

�

µ
x2

}
Hn

(√
�

h̄µ
x

)
. (4.16)

Hence, the eigenfunctions of the operator (1.2) have the form

ψn(x, R) = in√
n!

(
1√
2

)n ( 1

πh̄

)1/4 (
�

µ

)1/4

exp

{
− i

2h̄

ρ

µ
x2 − 1

2h̄

�

µ
x2

}
Hn

(√
�

h̄µ
x

)
,

(4.17)

and the corresponding eigenvalues are given by

En = h̄

(
n +

1

2

)(
�̃cµ

2�
+ �

)
. (4.18)

5. Adiabatic approximation

Assume that the evolution of a system is adiabatic. To this case (see (1.6)) the parameters
of the Hamiltonian slowly vary in time, and we can introduce, along with the ‘fast’ time t
appearing in the time derivative, a ‘slow’ time s on which the parameters of the Hamiltonian
(R(t)=R(s)) depend.

Let the ‘fast’ and the ‘slow’ times be related as

s = t

T
, (5.1)

where T is the evolution period of the system.
For equation (1.1), we consider the Cauchy problem

{−ih̄∂t + Ĥ�(R(s),�(t))}� = 0, (5.2)

�(x, t)|t=0 = ψn(x, R(0)), (5.3)

where ψn(x, R(0)) are the eigenfunctions of the instantaneous Hamiltonian Ĥ�(R(0),�(0)).
As noted above, to solve equation (5.2) in adiabatic approximation we have to solve the

Hamilton–Ehrenfest system and the system in variations accurate to the first order of 1/T .
The Hamilton–Ehrenfest system for the first-order moments can be written as

1

T
p′ = −σ0(s)x − ρ(s)p,

1

T
x ′ = µ(s)p + ρ(s)x,

(5.4)
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and for the second-order moments we have

1

T
σ ′

xx = 2µ(s)σxp + 2ρ(s)σxx,

1

T
σ ′

xp = µ(s)σpp − σ̃ (s)σxx,

1

T
σ ′

pp = −2ρ(s)σpp − 2σ̃ (s)σxp,

(5.5)

where a′ = da/ds.
Let us seek a solution to the Hamilton–Ehrenfest system (5.4), (5.5) in the form

x(t) = x(0)(s) +
1

T
x(1)(s), p(t) = p(0)(s) +

1

T
p(1)(s),

�(t) = �(0)(s) +
1

T
�(1)(s),

(5.6)

where

� =
σxx

σxp

σpp

 . (5.7)

Substituting (5.6) in the Hamilton–Ehrenfest system (5.4), (5.5) and equating the term of the
same powers in 1/T , we obtain

x(0) = x(1) = 0, p(0) = p(1) = 0,

�(0)(s) = C1


µ(s)

�(s)

− ρ(s)

�(s)

σ̃ (s)

�(s)

 , �(1)(s) = σ (1)
xx (s)

 1
− ρ(s)

µ(s)

σ̃ (s)

µ(s)

 + C1


0

1
2ρ(s)

(
µ(s)

�(s)

)′

− 1
µ(s)

(
ρ(s)

�(s)

)′

. (5.8)

The function σ (1)
xx (s) is determined by the condition of existence of the following approximation

and has the form

σ (1)
xx (s) = C1

µ2(s)

2�3(s)

(
ρ(s)

µ(s)

)′
+ C2

(
µ(s)

�(s)

)
. (5.9)

A trajectory in the extended phase space g = g(t,C) ∈ R
5 has the form

g(t,C) = (0, 0, σpp(t,C), σpx(t,C), σxx(t,C))ᵀ, C = (C1, C2)
ᵀ. (5.10)

Applying the change of variables (5.1) to the system in variations (3.7), we have

1

T
a′(t) = JHzz(t)a(t). (5.11)

Let us seek a semiclassical asymptotic solution to the system (5.11) as

a(t) = ei(T �(s)+φ(s))f (t), (5.12)

f (t) = f (0)(s) +
1

T
f (1)(s). (5.13)

Substituting (5.12) in (5.11) and equating the terms of the same order in 1/T , we obtain

�′(s) = �(s), φ′(s) = − µ(s)

2�(s)

(
ρ(s)

µ(s)

)′
,

f (0)(s) = 1√
�(s)µ(s)

(−ρ(s) + i�(s)

µ(s)

)
.

(5.14)
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Let us expand the vector f (1)(s) in the basis vectors f (0)(s) and f (0)∗(s) to obtain

f (1)(s) = α(s)f (0)(s) + β(s)f (0)∗(s). (5.15)

Then

β(s) = − µ(s)

4�2(s)

(
ρ(s) − i�(s)

µ(s)

)′
. (5.16)

The function α(s) is to be determined from the condition of existence of the next-order
approximation. We do not give the explicit form of this approximation, as it does not
contribute to the terms of the order of 1/T .

The matrix Q(t) = B(t)C−1(t) accurate to the first order in 1/T reads

Q(t) = Q(0)(s) +
1

T
Q(1)(s) = −ρ(s) + i�(s)

µ(s)
+

1

T

−1

2�(s)

(
�(s) + iρ(s)

µ(s)

)′
. (5.17)

The function

�
(0)
0 (x, t,C) = 4

√
1

πh̄

(
1

|C(t)|
)1/2

exp
[ i

2
(Arg C(0) − Arg C(t))

]
× exp

[
i

2h̄

(
−
∫ t

0
�̃c(s)σxx(t,C, h̄) dt + Q(t)x2

)]
(5.18)

is a solution of the associated equation (3.3) accurate to the first order in 1/T . Here σxx(t,C, h̄)

is determined from expressions (5.8) and (5.9), and Q(t) is given by formula (5.17). For the
Fock basis, we obtain the following representation:

�(0)
n (x, t,C) = 1√

n!
�

(0)
0

1√
2n

exp[−in(Arg C(t) − Arg C(0))]Hn(ξ),

ξ =
√

Im Q(0)(s)

h̄
x.

(5.19)

In view of (5.17), we define Cn as

Cn =
(
h̄

µ(2n + 1)

2�
, 0

)ᵀ
. (5.20)

Accordingly, a solution to equation (5.2) is determined as

�(0)
n (x, t) = �(0)

n (x, t,Cn). (5.21)

Note that if (5.3) is taken as an initial condition for finding a solution to equation (5.2), then

�(x, t) = �(0)
n (x, t) + O

(
1

T

)
, (5.22)

where

�(0)
n (x, t) = exp

{
− i

h̄
T

∫ s

0
En(τ) dτ + iγn(s)

}
ψn(x, R(s)). (5.23)

The function (5.23) is a solution of equation (5.2) in the adiabatic approximation. The
quantities

En(s) = h̄

(
n +

1

2

)(
�̃c(s)

2 Im Q(0)(s)
+ �(s)

)
= h̄

(
n +

1

2

)(
�̃c(s)µ(s)

2�(s)
+ �(s)

)
(5.24)
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are the eigenvalues of the instantaneous Hamiltonian Ĥ�(R(s), ψn(R(s)), and γn(s) has the
form

γn(s) = −
(

n +
1

2

)∫ s

0

[
φ′(τ ) − �̃c(τ )

2

ImQ(1)(τ )

(ImQ(0)(τ ))2

]
dτ

= −
(

n +
1

2

)∫ s

0

[
1 − �̃c(τ )

2

µ(τ)

�2(τ )

]
φ′(τ ) dτ

=
(

n +
1

2

)∫ s

0

[
1 − �̃c(τ )

2

µ(τ)

�2(τ )

]
µ(τ)

2�(τ)

(
ρ(τ)

µ(τ)

)′
dτ,

�(τ) =
√

[σ(τ) + �̃a(τ )]µ(τ) − ρ2(τ ). (5.25)

Considering the evolution during a period, we obtain

�(0)
n (x, T ) = exp

{
− i

h̄
T

∫ 1

0
En(s) ds + iγn(T )

}
�(0)

n (x, 0). (5.26)

Using (1.8) and (1.9), we determine the dynamic phase

δn(T ) =
(

n +
1

2

)
T

∫ 1

0

(
�̃c(s)µ(s)

2�(s)
+ �(s)

)
ds (5.27)

and the Berry phase

γn(T ) =
(

n +
1

2

)∮
C

[
1 − �̃c

2

µ

�2(s)

]
1

2�

(
dρ − ρ

µ
dµ

)
=
∮

C

An
µ dµ + An

ρ dρ. (5.28)

The components of the ‘potential’ An in the parameter space are determined by the following
relations:

An
µ = −

(
n +

1

2

)[
1 − �̃c

2

µ

�2

]
1

2�

ρ

µ
,

An
ρ =

(
n +

1

2

)[
1 − �̃c

2

µ

�2

]
1

2�
,

An
σ = An

a = An
b = An

c = 0.

(5.29)

The Berry phase can be presented in the form of an integral over a surface � in the space of
parameters, supported by the contour C:

γn(T ) =
(

n +
1

2

)∫ ∫
�

1

4�3
{σ̄ (dρ ∧ dµ) + ρ(dµ ∧ dσ̄ ) + µ(dσ̄ ∧ dρ)}

− �̃c

2

3µ

4�5
{σ̃ (dρ ∧ dµ) + ρ(dµ ∧ dσ̃ ) + µ(dσ̃ ∧ dρ)}, (5.30)

σ̃ = σ + �̃a, σ̄ = σ + �̃(a + c).

Expression (5.23) confirms the statement of the adiabatic theorem for a nonlinear equation
with the Hamiltonian (1.2) in the class of trajectory-concentrated functions.

The difference between the Berry phases for the nonlinear equation (1.1) and for the
linear Schrödinger equation (�̃ = 0) is the variation of the frequency � and in the appearing
additional summand

−
(

n +
1

2

)∮
C

�̃c

2

µ

�2

1

2�

(
dρ − ρ

µ
dµ

)
. (5.31)

Note that the calculation of the Berry phase from the states (4.17) by formula (1.11) does
not give the term (5.31). Accordingly, expression (5.29) for the ‘potentials’ differs from that
obtained by formula (1.12) by terms proportional to �̃c. This is so because the states (4.17)



1204 F N Litvinets et al

do not satisfy the superposition principle. In the limiting case as �̃ → 0, the Berry phase
coincides with that obtained earlier in [29] (see also [24]).

The classical analogue to a Berry phase is known as a Hannay angle (see e.g. [30]), a
component in the dynamic part of the ‘angle’ variable that arises in an adiabatically evolvable
integrable dynamical system described in terms of the ‘action-angle’ variables. Hannay’s
angle has a nature similar to that of Berry’s phase, and the relationship between Berry’s phase
γ of a quantum system and Hannay’s angle � of the corresponding classical system is given
by the formula

� = −h̄
∂γ

∂I
= −∂γ

∂n
, (5.32)

where I is the quantized action and n are quantum numbers. The differentiation with respect
to n is performed as if it would be a continuous parameter. In a nonlinear case, it is natural to
associate the Hamiltonian Ĥ� with an analogue of Hannay’s angle by formula (5.32)

�� = −
∮

C

[
1 − �̃c

2

µ

�2

]
1

2�

(
dρ − ρ dµ

µ

)
. (5.33)

In the limit �̃ → 0, we obtain the well-known Hannay angle for the generalized harmonic
oscillator [30].

6. Conclusions

In this paper, we have constructed a solution for the one-dimensional nonstationary Gross–
Pitaevskii equation (1.1) and have found explicit expressions for the adiabatic Berry phase.
The eigenfunctions of the instantaneous nonlinear Hamiltonian (1.2) have been constructed
by a semiclassical method based on the Maslov complex germ theory [34, 35]. This method,
approximate in general, gives exact solutions for the spectral problem in the case under
consideration.

A classical analogue of the Berry phase is the Hannay angle [30]. We have defined
the Hannay angle in terms of quantum mechanics, since the nonlinear problem requires a
special study of the ‘classical equations’ corresponding to the nonlinear ‘quantum’ Gross–
Pitaevskii equation. In our consideration, the role of these classical equations is played by
the Hamilton–Ehrenfest system (2.2), which has no Hamiltonian form relative to the standard
Poisson bracket.

The geometric potentials obtained (5.29), which determine the Berry phase, are Abelian.
In the linear quantum-mechanical case (� = 0 in equation (1.1)), they can be treated as
effective potentials of an electromagnetic field. Such a situation takes place, e.g., in the theory
of the molecular Aharonov–Bohm effect in the Born–Oppenheimer adiabatic approximation.
The corrections arising due to this effect are experimentally established in chemical physics
[6]. These potentials were also considered in [31].

The non-Abelian Berry phase is of interest in quantum computations [32, 33]. Such a
phase appears for an instantaneous Hamiltonian having a degenerate spectrum, which arises
in a multidimensional case. The approach developed in this paper admits multidimensional
generalization and the results obtained can be used to study the relevant problems.

In conclusion, let us discuss the applicability of the adiabatic approximation T → ∞
to the Gross–Pitaevskii equation (1.1). The nonlinear Schrödinger equation is well known
to be used in quantum mechanics for approximate description of linear many-body systems
[36]. Special features of the dynamics of systems of this type were studied, in particular, by
Jona-Lasinio [37] who revealed numerically that in the thermodynamic limit, the solutions of
nonlinear mean-field equations that describe a spinless boson system show chaoticity.
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In the BEC theory, a Gross–Pitaevskii equation is obtained from kinetic equations by
neglecting the non-coherent counterparts of non-condensate states while taking into account
pairwise elastic collisions. Only the coherent evolution of the BEC states is considered. In
this case, the Gross–Pitaevskii equation describes the evolution of the BEC for physically
significant times, namely, as long as the BEC exists [8, 9]. Physically, a BEC is a metastable
state with long lifetimes. In particular, in these limits, the long adiabatic time T can be used. We
have constructed asymptotic solutions to equation (1.1) for cases where the adiabatic evolution
time can be considered long so that the fractional variations of the adiabatic parameters be
small (�1). Taken in this sense, the variation of the asymptotic parameter T → ∞ is within
the applicability limits of the Gross–Pitaevskii equation (1.1). It should be mentioned that for
the scattering problem, solutions asymptotic in T → ∞ were constructed for some special
cases of equation (1.1) (see e.g. [38, 39] and references therein).
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